Excitement about learning complicated things

Do we all have things we look forward to learning? In early 1983 I was very excited about learning the meaning of ‘Direct decomposition of a finitely generated module over a principal ideal domain’. That was the name of the central section of the main text for my second year uni algebra course. The text was ‘Rings, Modules and Linear Algebra’ by Hartley and Hawkes.

I understood from the course summary and the blurb on the textbook that learning how to do the activity described by the above italicised phrase was one of the main goals of this course.

What I found particularly appealing about the goal was that it referred to three different things, none of which I knew what they were. What is direct decomposition? Dunno! What is a finitely generated module? Dunno! What is a principal ideal domain? Dunno!

To add to the titillating obscurity of the subject, each of the three things was qualified by an adjective or adverb. The first two things only had one qualification each: direct decomposition rather than just any old ordinary decomposition, and finitely-generated module rather than just a commonorgarden module. But the third thing actually had two qualifications. This was not just an ideal domain or a principal domain but it was a principal, ideal domain. How exciting is that?

(Mathematicians may wish to object that the comma does not belong, and that the word ‘principal’ actually qualifies the word ‘ideal’ rather than the word ‘domain’, so that ‘a principal ideal is a thing’, whereas a ‘principal domain’ and an ‘ideal domain’ are ‘not a thing’, to borrow the ‘thing’ terminology that seems to be so popular amongst today’s young people. But let’s not allow this minor technical point to spoil a good story).

Why, you might wonder, was I so fascinated by a topic with so much jargon in it? What, you might ask, and perhaps not entirely without reason, is my problem?

The answer, I think, is that I have a fascination with jargon, and more generally with weird, obscure and bizarre things. The jargon has to be justified though. I have no interest in the jargon invented by some professions (merchant bankers and stock brokers in particular come to mind) to describe perfectly ordinary concepts in obscure ways in order to make them appear clever to others and justify their exorbitant fees. No, what excites me is jargon that people have no choice but to invent because the concepts it is describing are so abstract and complex that ordinary words are useless.

The jargon of mathematics and many of the sciences is of this justified type. When a physicist tells you that the steps necessary for predicting the perihelion of Mercury include performing a contraction of the Riemann tensor and another contraction of the Ricci tensor in a Swarzschild spacetime, or that the possible states of a carbon atom form an exterior algebra generated by the Hilbert spaces of electrons, neutrons and protons, she is describing things that cannot be described in plain language. And yet they are real things, not just insubstantial ideas. They are things that enable humans to perform wonders.

More to the point though, when Doctor Who announces that he has ‘Reversed the polarity of the neutron flow’, we learn that as a consequence of this linguistic peculiarity the universe, which was about to have its space time continuum rent asunder (ouch!), has been saved. This is no postmodernist proliferating syllables for the sake of mystery and pomposity, as in:

“We can clearly see that there is no bi-univocal correspondence between linear signifying links or archi-writing, depending on the author, and this multireferential, multi-dimensional machinic catalysis.” [Felix Guattari]

At heart, I think my fascination with genuine jargon is just part of an insatiable curiosity. The world is so full of intricate patterns and amazing phenomena, yet we will only ever get to see a tiny part of what is there. I want to find out what I can while I have the chance.

I can’t remember much about that 1983 algebra course, but I can picture that topic title going around and around in my brain like an obsession. I particularly remember running around the uni oval in athletics training, thinking as I went that within a few months I would actually be one of the privileged few that understood ‘Direct decomposition of a finitely generated module over a principal ideal domain’, even though at that time I had no idea of what it even meant. It was like counting down the days to Christmas.

I can’t remember the point at which we finally learned how to do it. Perhaps it was a bit of an anti-climax. Perhaps it turned out not to be as exotic as it sounded, or familiarity had bred contempt (or at least dissipated some of the awe) by the time we neared the end of semester.

As well as spoken jargon I also have a taste for unusual symbols. In primary school, when everything we do in maths is a number, the idea of doing algebra in high school, where we would use letters rather than numbers, seemed very grown-up. In junior high school we could look forward to trigonometry with those funny sin, cos and tan words, then logarithms and exponentials with log x and superscripts ex and then, even more alluring, calculus in senior high school with those loopy integral signs ∫.

At uni I couldn’t wait to be able to use the ‘plus’ and ‘times’ signs with circles around them – ⊕ and ⊗, the special curly ‘d’s that are used for partial differentials ∂. And the upside-down triangle ∇. I imagined it would be like learning a secret language, into which only specially selected people would be initiated (Yes I was vain! So sue me. What privileged, talented 20-year old isn’t?) As it turned out I didn’t get to use ∂ much, and didn’t get to learn about ⊗ or ∇ at all, because of my subject choices.

I very much wanted to learn about ‘tensors’. I had heard that they were like matrices (rectangular tables of numbers that all maths students have to study in first year uni) only more complex, and that you needed them to do relativity theory. But again I missed out because of my subject choices. Not that I regret that. If I hadn’t made the choices I did, I’d have missed out on learning about finite-state automata and NP-complete problems, and would never have had the opportunity to design a computer chip that converted binary to decimal or to write parallel-processing computer programs to simulate populations of aliens (that’s beings from other planets, not the human immigrants the Tea Party are so worried about).

Over the last few years I have rectified my lamentable ignorance of tensors, ⊗ and ∇, as a consequence of my mid-life crisis. Some people buy red sports cars and get plastic surgery. I decided I couldn’t live another year without understanding General Relativity and Quantum Mechanics. It takes all sorts, I suppose.

An unexpected bonus of this flurry of crisis-induced self-study was two new hieroglyphics 〈x| and |y〉 – complete with funny names: ‘bra’ and ‘ket’ (because when you put them together to make an ‘inner product’, written 〈x|y〉, you make a ‘bra[c]ket’ – get it?).

An unexpected bonus of this flurry of crisis-induced self-study was two new hieroglyphics 〈x| and |y〉 – complete with funny names: ‘bra’ and ‘ket’ (because when you put them together to make an ‘inner product’, written 〈x|y〉, you make a ‘bra[c]ket’ – get it?). That affords me the smug satisfaction of being able to understand – if not necessarily able to follow – most of what is written on the sitting-room white board that’s often in the background in The Big Bang Theory. And yes, it usually is real physics or maths, not just made-up jumbles of unrelated symbols. Sometimes it’s even relevant to the story-line, like when Sheldon had Permutations and Combinations of a set of 52 elements written on the board, because he was trying to figure out a magic card trick one of the others had done (not that they ever referred to the board). That’s in contrast to Doctor Who, where they just sling any old combination of fancy words together (‘Reverse the polarity of the neutron flow’ is not a ‘thing’. Or at least, it’s not a ‘thing’ you can do.).

I’m not expecting this essay to resonate with many people. It is a rare perversion to be intrigued by arcane language and symbols. But perhaps it’s not unusual for people to long to learn something or other that is currently far beyond their knowledge or abilities. It might be how to crochet an intricate doily, to speak a foreign language fluently, to recite The Rime of the Ancient Mariner from memory or, when a bit younger, yearning to be able to ride a bicycle without training wheels, swim the Australian Crawl or play a piano with both hands at the same time.

Andrew Kirk

Bondi Junction, March 2014


One Comment on “Excitement about learning complicated things”

  1. danielgran1 says:

    I resonate with it (the essay) sir. Nay, I’m even worse than you! Learning simple FOL by myself in high school is enough to stoke the fires of my vanity, even though I know it is nothing arcane or difficult.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s